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Abstract 
As grapheme-to-phoneme methods proliferate, their careful 
evaluation becomes increasingly important. This paper ex-
plores a variety of metrics to compare the automatic pronunci-
ation methods of three freely-available grapheme-to-phoneme 
packages on a large dictionary. Two metrics, presented here 
for the first time, rely upon a novel weighted phonemic substi-
tution matrix constructed from substitution frequencies in a 
collection of trusted alternate pronunciations. These new met-
rics are sensitive to the degree of mutability among phonemes. 
An alignment tool uses this matrix to compare phoneme sub-
stitutions between pairs of pronunciations.  
Index Terms: grapheme-to-phoneme, edit distance, substitu-
tion matrix, phonetic distance measures 

1. Introduction 
Grapheme-to-Phoneme (G2P) translation is an essential com-
ponent of both Automatic Speech Recognition (ASR) and Text 
to Speech (TTS) synthesis applications. As G2P methods pro-
liferate, it is important to gauge their relative effectiveness. 
The thesis of this work is that the comparison of pronuncia-
tions should quantify the likelihood of different phonemic sub-
stitutions. This paper advocates the measurement of phonetic 
distance with a weighted phonemic substitution matrix 
(WPSM). The WPSM is constructed from the frequency of 
substitutions that appear in a collection of trusted alternate 
pronunciations. The principal result of this paper is that such a 
WPSM supports an intuitively reasonable and effective meas-
ure of the similarity between two pronunciations. Metrics 
based on the WPSM provide incisive comparisons of the accu-
racy of automated pronunciation tools. 

The approach used here is modeled on the way biologists 
align two protein sequences [1]. Each sequence is represented 
as a string on an alphabet, where each letter (here, an entry) 
represents a particular amino acid or nucleotide. Two strings 
are identical if and only if they have the same length and their 
corresponding entries are equal. Otherwise, the quality of an 
alignment (its score) is calculated from the similarity of each 
pair of corresponding entries, and the number and length of the 
gaps (blank entries) inserted to produce that alignment. The 
similarity of any pair of entries from the alphabet of amino ac-
ids is recorded in a BLOSUM matrix [2]. 

Analogously, our method represents a pronunciation as a 
string on an alphabet of phonemes. First, it calculates the 
WPSM, a BLOSUM-like matrix for pronunciation, from sub-
stitution frequencies in a set of trusted alternate pronuncia-
tions. Thereafter, it applies the WPSM to align two strings of 
phonemes (pronunciations) with the Needleman-Wunsch algo-
rithm [1]. The alignment score measures the similarity be-
tween the two pronunciations in a way that is sensitive to the 
differences between phonemes. 

There are three traditional measurements of G2P pronun-
ciation accuracy with respect to a correct (reference) pronun-
ciation: Levenshtein distance, phoneme error rate, and word 

error rate. The minimum number of insertions, deletions and 
substitutions required for transformation of one sequence into 
another is the Levenshtein distance [3]. Phoneme error rate 
(PER) is the Levenshtein distance between a predicted pro-
nunciation and the reference pronunciation, divided by the 
number of phonemes in the reference pronunciation. Word er-
ror rate (WER) is the proportion of predicted pronunciations 
with at least one phoneme error to the total number of pronun-
ciations. Neither WER nor PER, however, is a sufficiently 
sensitive measurement of the distance between pronunciations. 
Consider, for example, two pronunciation pairs that use the 
ARPAbet phoneme set [4]:  

 S  OW D AH         S OW D AH  
 S  OW D AA         T AY B L 

On the left are two reasonable pronunciations for the English 
word “soda,” while the pair on the right compares a pronuncia-
tion for “soda” to one for “table.” WER considers these pairs 
equally distant (100%), while PER detects a difference. In the 
following two pairs, however, the pair on the right has an un-
reasonable pronunciation for “soda”: 

 S  OW D AH         S OW D AH  
 S  OW D AA         S OW D L 

Nonetheless, WER, PER, and Levenshtein distance are the 
same for these two pairs (100%, 25%, and 1, respectively). 
The WPSM metrics described here are sensitive enough to 
overcome these limitations. 

The next section of this paper describes related work. Sub-
sequent sections describe the construction of a WPSM, illus-
trate its application to three freely-available G2P methods, and 
discuss the results. 

2. Related work 
ASR and TTS synthesis are core functions of spoken dialogue 
systems. Both require translation between orthographic and 
phonetic representations of words. Typically, such translation 
uses a phonetic dictionary that contains a list of words and 
their associated pronunciations. Even large phonetic dictionar-
ies, however, do not cover all the pronunciations required for 
real-world tasks that involve very large vocabularies. (Indeed, 
the work reported here was motivated by a system to support 
telephoned book orders from a library for visually-impaired 
patrons [5], where the correct pronunciation of all 28,031 au-
thor names was unavailable.) A spoken dialogue system with 
such a large vocabulary typically uses a phonetic dictionary 
for a large set of common words, and relies on an automated 
G2P method to translate out-of-vocabulary words. 

Rule-based G2P methods encode natural language pronun-
ciation rules informed by linguistic expertise. Although pro-
nunciation rules for languages such as English are highly 
complex and contain many exceptions and special cases, some 
rule-based methods (e.g., Orator [6]) have been successful. 
Rule-based G2P methods are represented in this experiment by 
Logios [7], a component of the freely available Olympus spo-
ken dialog system developed at Carnegie Mellon University 
(CMU). Logios itself was based on the MITalk speech synthe-
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sis system [8, 9]. 
Instead of using a priori rules, data-driven G2P methods 

produce pronunciations with probabilistic models built from a 
large corpus of training examples. The corpus itself is a pho-
netic dictionary. The experiment reported here includes two 
data-driven methods: the decision-tree model of the Festival 
Speech Synthesis system [10], and Sequitur G2P [11], which 
is based on joint-sequence models. 

Comparison of G2P methods requires some common 
measure of accuracy. Although G2P accuracy is most com-
monly measured by PER [11, 12, 13], the weakness of PER is 
that every difference between a pair of phonemes is treated 
equally. That may not adequately represent the perceived sub-
stitution cost. For example, from the perspective of the user in 
a spoken dialogue system, a vowel-to-consonant or consonant-
to-consonant substitution may be perceived as a more serious 
error than a vowel-to-vowel substitution, and should therefore 
have an appropriately higher substitution penalty. Refinements 
of the measure of phonetic distance and the quantification of 
substitution penalties have been proposed for applications 
ranging from speech pathology diagnosis [14] to the construc-
tion of linguistic evolutionary trees [14, 15, 16]. 

An analog to the measurement of edit distance between 
sequences is a measurement of their similarity. The similarity 
score of two strings is the maximum possible sum of substitu-
tion weights for each pair of aligned entries, as given in a sub-
stitution matrix, together with gap penalties for each insertion 
or deletion. Needleman-Wunsch is a dynamic programming 
algorithm that finds the maximum similarity score of two 
strings. Needleman-Wunsch iteratively aligns increasingly 
long string prefixes. For each prefix pair it chooses the maxi-
mum score that results when either the last entry in one prefix 
is substituted for the last entry in the other, or the last character 
in one string is aligned with a gap.  

 Applied to pronunciation, the Needleman-Wunsch algo-
rithm requires quantitative phoneme similarity scores, for 
which various derivation methods have been proposed. One 
approach labels each phoneme with a set of articulatory fea-
tures, and makes the substitution cost between two phonemes 
inversely proportional to the size of the intersection of their 
feature sets [17]. Another approach assigns numeric values to 
these features, and computes substitution cost as the distance 
between feature vectors [14, 16]. Perceptual listening tests 
have also been used to create a matrix of empirical confusion 
scores between English phonemes [18], from which substitu-
tion costs may be derived [17]. 

In bioinformatics, sequence alignment is commonly used 
with matrices containing similarity scores for pairs of amino 
acids. One of these, the PAM matrix [19], inspired a scoring 
matrix for grapheme-to-grapheme similarity to identify cog-
nates in written languages [20], but it was not derived from a 
set of trusted alignments and is for graphemes, not phonemes. 
In contrast, both the BLOSUM substitution matrices and the 
work reported here derive their scores from substitution counts 
observed in a large body of trusted sequence alignments. The 
next section describes how we derive WPSM phoneme simi-
larity scores from a source of trusted alternate pronunciations, 
and then apply them to compare pronunciations. 

3. Experimental design 
CMU’s Pronouncing Dictionary v0.7a (here, CMUDICT) is an 
English-pronunciation dictionary widely used in both ASR 
(e.g., CMU’s Sphinx) and TTS (e.g., Festival) applications 
[21]. Each of its 133,354 plain text entries is a headword (an 
orthographic string) and a pronunciation, a string of phonemes 
drawn from the ARPAbet phonetic alphabet along with stress 

weights. CMUDICT provides alternate pronunciations for 
many words. We pre-processed it before this experiment to 
remove non-alphabetic characters, phonetic stress weights, and 
acronym expansions. The filtered dictionary (hereafter, 
FDICT) has 129,559 entries. We used FDICT in two ways: as 
a source of trusted alignments for the WPSM, and as the train-
ing corpus for both Festival and Sequitur. 

3.1. Construction of the WPSM 
Intuitively, an individual WPSM value is the average similari-
ty per phoneme between two alternate pronunciations of a giv-
en English word. The WPSM records the frequencies of sub-
stitutions in a set of alignments of alternate pronunciations. 
There are 8513 words in FDICT with two or more pronuncia-
tions. We aligned each pair of pronunciations for the same 
headword with an implementation of Needleman-Wunsch that 
minimized their Levenshtein distance. This produced 10,159 
pairs of alignments. In those alignments, we calculated p(α), 
the frequency of phoneme α, and p(α, β), the frequency with 
which phoneme β was substituted for phoneme α. Each entry 
in the WPSM is the log-odds of each such α–β substitution, as 
calculated by: 

 

 

W (α,β ) = log
p(α,β ) + p(β ,α)

p(α) p(β )
 (1) 

Note that W(α,β) = W(β,α) for all α  and β. Equation (1) pro-
duces the value in the αth row and βth column of the WPSM. 
A positive W(α,β) means that the substitution of β for α or α 
for β is more likely to occur in a string than the independent 
occurrence of α and β together in the same pronunciation. A 
negative W(α,β) means that the substitution is highly unlikely, 
that is, a pronunciation is more likely to contain the two pho-
nemes independently than to substitute one for the other. 

Figure 1 is an excerpt from the constructed WPSM. The 
matrix is symmetric; its diagonal entries are the match scores 
of a phoneme with itself, while the non-diagonal entries are 
the mismatch scores due to substitution. The more positive the 
score, the more often the substitution occurred in the 10,159 
alignments. The highest score in each row is the match score 
(e.g., W(AA,AA) = 2.93), but mismatch scores vary. For exam-
ple in Figure 1, substitution of B for AA has a far lower score 
(–0.03) than substitution of AE for AA (1.69). Lower scores in-
cur higher penalties. Figure 1 confirms our earlier intuitions 
about acceptable phoneme substitutions. 

Although analogous to the construction of a BLOSUM 
matrix, construction of the WPSM warranted several differ-
ences appropriate to spoken language. For BLOSUM, no 
alignment is trusted unless it satisfies an identity requirement 
that mandates some percentage of aligned phonemes be identi-
cal. Here, we trusted that all alternates in FDICT reflect daily 

 
Figure 1: Upper left corner of the WPSM, calculated 
from equation (1). 
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language. Furthermore, BLOSUM entries are multiplied by a 
constant λ or rounded to the nearest integer. We also artificial-
ly set the frequency of any substitutions with frequency zero to 
that of the smallest non-zero entry in the entire WPSM, and 
thereby ensure that (1) is well defined. Finally, for the gap 
penalty we used the average of all negative mismatch scores. 

3.2. Training and testing 
We trained Festival and Sequitur with 10-fold cross validation, 
as follows. First, we randomly partitioned all FDICT head-
words into 10 subsets of equal size. All variant pronunciations 
for the same headword were placed into a single subset. This 
guaranteed that a headword would never serve as both a train-
ing example and a testing example. For each subset S (i.e., 10 
times), the system was trained on the union of the other 9 sub-
sets and its learned performance evaluated on S. We trained 
Festival using the Festvox 2.1 toolkit [22]. We trained Sequi-
tur to model M-grams up to size 5 [11]. Logios already has its 
own G2P rule set and thus required no training. 

To test all three G2P methods (Festival, Sequitur, and 
Logios), we stripped the holdout sets of their phonetic pronun-
ciations, so that each test set contained only orthographic 
headwords. We then used each G2P method to produce a can-
didate pronunciation for each test set example, and compared 
that candidate with the reference pronunciation recorded in 
FDICT. We recorded scores for each distinct headword in a 
test set. If a test headword had multiple pronunciations, we 
recorded the highest similarity (or lowest distance) scores be-
tween a candidate for that headword and any reference pro-
nunciation for it in FDICT. 

3.3. Metrics for pronunciation comparison 
For each G2P method and each test set, we measured WER, 
PER, MLD (mean Levenshtein distance per pronunciation), 
MSS (mean similarity score per pronunciation), and MIR 
(mean identity ratio per pronunciation). Table 1 provides 
examples of these measures for two well-known alternate 
pronunciations of “tomato,” and for a reasonable and an 
egregious pronunciation of “tomato.” WER, PER, and MLD 
for the two pairs are equivalent — from their perspectives, the 
distance between pronunciation pairs is the same.  

In contrast, MSS and MIR both reference the WPSM, and 
correctly score the similarity for the righthand pair in Table 1 
lower. Intuitively, MSS asserts that a single substitution in a 
long word is less severe than in a short word. MSS is the ratio 
of the WPSM similarity score between the FDICT and candi-
date pronunciations to their average length. Finally, an identity 
score compares an FDICT pronunciation to itself; it serves as 
an upper bound on how similar any pronunciation can be to 
the FDICT reference pronunciation. MIR is the ratio of the 
WPSM similarity score between the FDICT and test pronunci-
ations to the identity score of the FDICT pronunciation, ex-
pressed as a percentage. Given our assumption that FDICT 
pronunciations are correct, a good G2P method should have 
low WER, PER, and MLD, and high MSS and MIR. 

MLD, MSS and MIR are calculated from the best 
Needleman-Wunsch alignment between a candidate pronunci-
ation for a test example and its FDICT pronunciation. To cal-
culate the Levenshtein distances with the Needleman-Wunsch 

algorithm, we prepared a separate matrix with negative unit 
scores for substitutions and zero scores for identities, and used 
the absolute value of the resulting score.  

4. Results 
We applied all five metrics in Section 3.3 to measure the per-
formance of three G2P methods: Festival, Sequitur, and Logi-
os. Table 2 shows the mean values of each performance metric 
on the 10 holdout sets, along with 95% confidence intervals. 
Word error rate, phoneme error rate, and average Levenshtein 
distance per word (MLD) are difference measures — the high-
er the number, the greater the difference between CMU’s 
FDICT pronunciation and the pronunciation produced by the 
corresponding G2P method. MSS and MIR are similarity 
measures based on phoneme weights in the WPSM. A very 
low score represents a pronunciation with a set of phonemic 
substitutions unlikely to be made in the English language. The 
higher the MSS or MIR score, the closer the pronunciation is 
to a reference pronunciation.  

Under every metric applied here, Sequitur had the highest 
similarity scores and the lowest difference scores. Although 
the results in Table 2 are remarkably similar to those reported 
elsewhere for Sequitur and Festival, comparison of WER and 
PER to those reports may be inappropriate. Earlier work used 
a different version of CMUDICT, an M-gram size of 9 rather 
than 5 (used here in the interest of time), and scored multiple 
reference pronunciations of a single headword differently. To 
the best of our knowledge, the Logios method has no previous-
ly reported WER or PER results.  

5. Discussion 
This work relies heavily on CMUDICT in three ways. First, 
we use it as a training corpus for Festival and Sequitur. Ulti-
mately the performance of both G2P methods is highly de-
pendent on its training data. Any errors or inconsistencies in 
CMUDICT make their way into these methods’ predictive 
models. For example, one CMUDICT pronunciation of “Bue-
nos Aires” is B W EY N AH S EH R. This corrupts the name’s end-
ing because it ignores the trailing “es” of its orthographic 
form. The second way we use CMUDICT is to measure how 
well the methods’ pronunciations conform to CMUDICT’s 
pronunciation on a holdout set, rather than measure their cor-
rectness according to the rules of standard American English 
pronunciation. Not only does this mean that errors in 
CMUDICT give a false measure of correctness, they also give 
an unfair advantage to learning methods like Festival and Se-
quitur, which are trained on a subset of CMUDICT and there-

 WER (%)* PER (%)* MLD* MSS† MIR (%)† 
Festival 40.10 ±0.40  9.06 ±0.11 0.57 ±0.01 2.683 ±0.003 94.22 ±0.09 
Logios 51.15 ±0.47  16.45 ±0.16 1.04 ±0.01 2.541 ±0.003 89.39 ±0.10 

Sequitur 27.94 ±0.45  6.75 ±0.14 0.43 ±0.01 2.727 ±0.003 95.73 ±0.09 

Table 2: G2P pronunciation comparisons with 95% confidence intervals. * lower is better; † higher is better. 

Alignment T AH  M EY  T OW 
T OW M  AA  T  OW 

T AH M EY T  OW 
T AH M SH T  SH 

WER  100%  100% 
PER  33.3%  33.3% 
MLD  2.00  2.00 
MSS  2.32  1.92 
MIR  81.30%  69.87% 

Table 1: Sample alignments and associated scores for 
the headword “tomato.” 
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by learn its idiosyncrasies. In contrast, Logios’ rules were de-
signed long before CMUDICT was formulated, and have no 
prior knowledge of its content. 

The final way we use CMUDICT is as a source of pronun-
ciations from which to construct the WPSM. This assumes that 
included alternate pronunciations are valid and common in 
daily language. An alternate pronunciation in CMUDICT that 
is not used in practice introduces inaccuracies in the substitu-
tion frequency between alternate phonemes in the pronuncia-
tions. For example, CMUDICT contains two pronunciations 
for the headword “chemicals”:  

K EH M IH K AH L Z     and   CH EH M AH K AH L Z 
The second pronunciation’s leading CH increases the similari-
ty score of a K-CH pairing. Nonetheless, that pronunciation is 
not used in daily language, and distorts the K-CH phoneme 
substitution weight to some degree. This particular example 
has only a slight effect, given the size of the full set of vari-
ants, but errors of this type could accumulate. 

Our gap penalty for alignment is tailored for pronuncia-
tion. In nucleotides, a gap, or an insertion-deletion, may have a 
severe biological consequence, and possibly deform the trans-
lated protein. Biologists therefore assign a high penalty for the 
insertion of each gap. In speech, however, dropping a syllable 
is less severe. For the gap penalty here we used the average of 
all negative mismatch scores: –0.73. This value has intuitive 
appeal, as the average of all non-conserved mismatches. 
Moreover, in practice it produced good alignments, and did 
not exact an overly high penalty. 

The three G2P packages examined here are freely availa-
ble. Recent advances in G2P (noted in Section 2) are predomi-
nantly in machine learning. Nonetheless, the traditional use of 
WER and PER strongly favors those methods over rule-based 
ones. Table 2, for example, indicates that the Levenshtein dis-
tance per word for Logios is more than twice that for Sequitur. 
Logios uses a hand-tuned set of linguistic rules created by ex-
perts, rules that may make more use of similar phonemes, but 
Levenshtein distance is not sensitive to similarity between 
phonemes. In contrast, MSS and MIR are calculated from 
WPSM scores, and suggest that Logios’ performance is less 
weak than it first appears. This matches our intuition that a set 
of hand-tuned linguistic rules may not perform as badly as the 
Levenshtein distance suggests, perhaps because of their sensi-
tivity to similar phonemes. Nonetheless, Sequitur after training 
produces pronunciations that best match previously-unencoun-
tered reference pronunciations in CMUDICT. 

Our method is general enough to be used with any source 
of pronunciation variants, such as the Unisyn Lexicon 
(UNILEX) from the University of Edinburgh [23]. UNILEX 
uses the SAMPA phoneme set. (A mapping between SAMPA 
and ARPAbet phonemes would be required to use a UNILEX-
derived WPSM.) Moreover, recent work in biology has indi-
cated that matrix modifications particular to the proteins of in-
terest produce more appropriate alignments [24]. This suggests 
that a WPSM developed for a dialect would better support the 
comparison of pronunciation methods there.  

The results presented here suggest that pronunciation with 
a traditional rule-based method is less error-ridden than WER, 
PER, and MLD would lead one to believe. Nonetheless, 
among the three tested automatic pronunciation methods, Se-
quitur is the best performer.  This comparison is trustworthy 
because it uses metrics that reflect the variation in substitution 
frequency in practice across a large common vocabulary. 
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